Comment faire le sens des nombres (mathématiques mentales)?

Le sens des nombres ou mathématiques mentales est la compétence d'utiliser l'algèbre appliquée, la technique des mathématiques, la puissance du cerveau et l'invention pour résoudre des problèmes de mathématiques.
Le sens des nombres ou mathématiques mentales est la compétence d'utiliser l'algèbre appliquée, la technique mathématique, la puissance du cerveau et l'invention pour résoudre des problèmes mathématiques. Tous les détails de certaines de ces techniques sont décrits dans des liens vers d'autres articles du guide.

En ignorant le 5 à la fin, multipliez le nombre (3) par le nombre le plus élevé suivant (4).
Prérequis: Connaître l'addition, la soustraction, la multiplication et la division par mémoire.
Méthode 1 sur 2: addition et soustraction
- 1Convertissez des nombres difficiles à ajouter en nombres faciles à ajouter.
- Arrondissez le nombre (à ajouter) au multiple le plus élevé suivant de dix.
- Ajoutez à l'autre numéro.
- Soustrayez le montant arrondi.
- Exemple 88 + 56 =?; Arrondissez 88 à 90.
Additionnez 90 à 56 = 146
Soustrayez les deux ajoutés à 88 (pour arrondir à 90).
146 - 2 = 144; la réponse! - Ce processus est un simple recadrage du problème en 56 + (90 -2). Exemples d'autres utilisations de cette technique: 99 = (100 - 1); 68 = (70 - 2)
- Vous pouvez également utiliser une technique de recadrage similaire pour la soustraction.
- Exemple 88 + 56 =?; Arrondissez 88 à 90.
- 2Convertissez l'addition en multiplication. La multiplication est l'addition de plusieurs occurrences du même nombre.
- Notez combien de fois un nombre à ajouter est répété.
- Par exemple:
7 + 25 + 7 +7 +7 =
devient 25 + (4 × 7) =
25 + 28 = 53
- Par exemple:
- Notez combien de fois un nombre à ajouter est répété.
- 3Annulez les oppositions additives. Les opposés additifs peuvent être +7 - 7.
Les opposés additifs peuvent également être 5 - 2 + 4 - 7.- Recherchez les nombres qui additionnent ou soustraient pour un total de 0. En utilisant l'exemple ci-dessus: (REMARQUE: l'image ci-dessus est fausse. Elle montre 5 + 9 = 9 <-> -2 -7 = 9 alors qu'elle devrait être 5 + 4 = 9 <-> -2 -7 = -9)
5 + 4 = 9 est l'opposé additif de -2 -7 = -9
Puisqu'ils sont opposés additifs, aucune addition réelle des quatre nombres n'est nécessaire; la réponse est 0 (zéro) en annulant.- Essayez ceci:
4 + 5 - 7 + 8 - 3 + 6 - 9 + 2 =
devient:
(4+5) -9+ (-7-3) + (8+2) + 6 = En regroupant
et rappelez-vous, ne les ajoutez pas; supprimez simplement les opposés additifs du problème.
0 + 0 + 6 = 6
- Essayez ceci:
- Recherchez les nombres qui additionnent ou soustraient pour un total de 0. En utilisant l'exemple ci-dessus: (REMARQUE: l'image ci-dessus est fausse. Elle montre 5 + 9 = 9 <-> -2 -7 = 9 alors qu'elle devrait être 5 + 4 = 9 <-> -2 -7 = -9)

Vous trouverez plusieurs bons sites en effectuant une recherche en ligne sur «pratique des mathématiques mentales».
Méthode 2 sur 2: multiplication
- 1Gérez les nombres se terminant par 0 (zéro). Par exemple, 120 × 120 =
- Comptez le nombre total de zéros à la fin. (Dans ce cas, 2).
- Faites le reste du problème.
12 × 12 = 144 - Ajoutez le nombre de zéros comptés à la fin du nombre;
14400
- 2Utilisez la propriété distributive de la multiplication pour convertir des nombres difficiles à multiplier en nombres faciles à multiplier. Vous pourrez peut-être alors utiliser certaines des techniques ci-dessous.
- Par exemple: au
lieu de 14 × 6,
décomposer 14 en 10 et 4, multiplier les deux par 6, puis les additionner...
14 × 6 = = 6 × (10 + 4) = (10 × 6) + (4 × 6) = 60 + 24 = 84. - Par exemple: au
lieu de: 35 * 37 =?
faites ceci: 35 × (35 + 2) =
= 352 + (2 × 35) = 1225 + 70 = 1295
- Par exemple: au
- 3Les nombres carrés se terminant par 5 (cinq).
Utilisant; 352 =?- En ignorant le 5 à la fin, multipliez le nombre (3) par le nombre le plus élevé suivant (4).
3 × 4 = 12 - Ajoutez 25 à la fin du numéro.
1225
- En ignorant le 5 à la fin, multipliez le nombre (3) par le nombre le plus élevé suivant (4).
- 4Les nombres carrés un moins ou plus qu'un carré que vous connaissez déjà.
En utilisant 412 =? et 392 =?- Figure le carré que vous connaissez déjà.
402 = 1600 - Décidez si vous devez ajouter ou soustraire. Vous allez ajouter avec un carré plus grand et soustraire avec un plus petit.
- Ajoutez le nombre d'origine qui a été mis au carré au nombre suivant à mettre au carré.
40 + 41 = 81
40 + 39 = 79. - Faites l'addition ou la soustraction.
1600 + 81 = 1681 - -> 412 = 1681
1600 - 79 = 1521 - -> 392 = 1521
- Cela ne fonctionne que pour les numéros une unité au-dessus ou en dessous de l'original.
- Figure le carré que vous connaissez déjà.
- 5Simplifiez la multiplication en utilisant la «différence des carrés». En utilisant 39 × 51 =?
- Trouvez le nombre équidistant des deux nombres.
Dans ce cas, 45, soit 6 des deux nombres. - Mettez ce chiffre au carré.
452 = 2025 - Mettez au carré la distance entre les chiffres et le numéro central.
62 = 36 - Soustrayez ce nombre du premier carré.
2025 - 36 = 1989- Si vous avez pris algèbre, la formule est exprimée sous la forme:
51 x 39 =
(45 + 6) x (45 - 6) = 452 -62
(x + y) x (x - y) = x 2 - y 2 - Pour une explication plus complète, voir Comment résoudre facilement des problèmes mathématiques en utilisant la différence de carrés.
- Si vous avez pris algèbre, la formule est exprimée sous la forme:
- Trouvez le nombre équidistant des deux nombres.
- 6Multipliez par 25. En utilisant 25 × 12 =?
- Multipliez par 100 en ajoutant deux zéros à la fin de l'autre nombre (pas 25).
25 × 12
1200 - Diviser par 4.
1200 ÷ 4 = 300
25 × 12 = 300- Pour plus de détails, consultez Comment multiplier par 25 dans votre tête.
- Multipliez par 100 en ajoutant deux zéros à la fin de l'autre nombre (pas 25).
Questions et réponses
- Quels sont les sites Web utiles pour pratiquer le calcul mental?Vous trouverez plusieurs bons sites en effectuant une recherche en ligne pour «pratiquer les mathématiques mentales».
- Je veux connaître les raccourcis carrés et racines carrées ou les méthodes simples. Où puis-je trouver des trucs et astuces?Essayez KhanAcademy.org et MathIsFun.com.
- Une bouteille de soda contient 2 litres de soda. Combien de millilitres aura-t-il si je bois 25% de la bouteille?Vous buvez 0,25 du soda. 0,25 de 2 litres est 0,5 litre. 2 - 0,5 = 1,5 litre, soit 1500 millilitres restants.
- Et si je divisais une quantité inconnue de tranches de pizza à 6 personnes et que tout le monde en avait 3. Avec combien de tranches ai-je commencé?6 fois 3 = 18. Il y a 6 personnes et tout le monde a 3 tranches, puis pour trouver la pizza entière, vous devez multiplier 6 fois 3.
- Si le prix initial d'une chemise était de 40 et qu'elle est en vente pour 12 de moins que le prix initial, quel est le prix de vente de la chemise?40 moins 12 est 28, donc le prix de vente est de 28 de la devise avec laquelle vous travaillez.