Comment calculer le jour de la semaine?

Les instructions ci-dessous montreront comment calculer le jour de la semaine pour n'importe quel jour
Les instructions ci-dessous montreront comment calculer le jour de la semaine pour n'importe quel jour en 2007.

Vous avez peut-être entendu parler de personnes très douées qui peuvent calculer le jour de la semaine pour n'importe quelle date dans leur tête rapidement et avec précision. Voici plusieurs façons de faire ce calcul.

Méthode 1 sur 5: en utilisant une table de mois

  1. 1
    Ajoutez le jour et la valeur du mois. Si le nombre obtenu est supérieur à 6, soustrayez-y le multiple le plus élevé de 7. Tenez ce numéro.
  2. 2
    Soustrayez de l'année (les deux derniers chiffres de l'année) qui contient le multiple le plus élevé de 28. Ajoutez au nombre résultant le nombre que vous obtenez lorsque vous le divisez par 4 et arrondissez vers le bas (c'est-à-dire, supprimez la décimale). Ajoutez maintenant la valeur du Century à partir de la table Century. Si le mois est janvier ou février et que l'année est une année bissextile, soustrayez 1.
  3. 3
    Ajoutez les résultats des étapes précédentes. Si le nombre obtenu est supérieur à 6, soustrayez-y le multiple le plus élevé de 7. En utilisant le nombre résultant, recherchez le jour de la semaine dans le Weekday-Table.
    • Table du siècle et valeur de l'année. Le cycle à quatre chiffres (0-5-3-1) de la table des siècles se répète indéfiniment, comme indiqué dans le tableau par le 0 pour le siècle 2000. Ainsi, la valeur pour les 3300 serait 5. Cette valeur pour n'importe quel siècle peut au lieu de cela être calculé en multipliant 5 fois la différence entre le siècle (2 chiffres) et le plus grand multiple de 4 qu'il contient. Par exemple, les 3400 seraient 5 X (34-32) = 10 (et 10, lorsqu'ils sont réduits des 7 qu'il contient, équivaut à 3). Cette formule pourrait même être étendue davantage pour englober et calculer la valeur entière de l'année d'un seul coup, mais cette formule, dans sa forme la plus simple, serait trop compliquée à transporter dans sa tête et à effectuer ensuite le calcul rapidement et avec précision, qui sont les objectifs du processus expliqués ici.
    • Remarque: Ce processus peut être utilisé à l'envers pour trouver le mois, le jour ou l'année si l'un d'entre eux est manquant mais que le jour de la semaine est connu."
Calculez le jour de la semaine dans votre tête à partir de l'année
Calculez le jour de la semaine dans votre tête à partir de l'année, du mois et du jour.

Méthode 2 sur 5: en utilisant l'algorithme 2007

  1. 1
    Mémorisez «2007» et «mercredi». C'est votre jour et votre année de base. Les instructions ci-dessous montreront comment calculer le jour de la semaine pour n'importe quel jour en 2007. Les étapes finales montreront comment déplacer cela vers d'autres années.
  2. 2
    Mémorisez les dates suivantes. En 2007, ce sont tous les mercredis (votre jour de base pour cette année-là)
    • 4 avril (1), 6 juin (1), 1, 10/10 et 122 (12 décembre). Ceux-ci sont faciles à retenir pour les Européens ou les Européens en raison de la symétrie.
    • Aussi, mémorisez 71, 10,14, 1,8 et 0,56 (Aide-mémoire: Les gens du 71 travaillent de 9 à 5, et inversent aussi les chiffres).
    • Vous avez maintenant 1 jour de la semaine par mois d'avril à décembre. Janvier, février et mars ont votre jour de base (mercredi pour 2007) le 0,331, 0,29, 24, 11, 18, 0,43, 34, 1,51 et 1,58. Ceux-ci devraient être faciles à retenir car il s'agit de 714 2128, et nous faisons des mathématiques par 7 car il y a 7 jours par semaine.
    • Vous avez maintenant 1 jour de la semaine pour chaque mois. À partir de là, vous devriez pouvoir calculer facilement le jour de la semaine pour n'importe quelle date en 2007.
  3. 3
    Pour utiliser cet algorithme pour d'autres années, augmentez votre journée d'une pour chaque année (2006 correspond à mardi, 2005 correspond à lundi).
  4. 4
    Pour les années bissextiles, calculez comme d'habitude pour janvier et février. Ajoutez un jour supplémentaire pour les autres mois, donc bien que 2006 soit mardi et 2007 soit mercredi, 2008 est vendredi (pour mars et au-delà)
Vous avez peut-être entendu parler de personnes très douées qui peuvent calculer le jour de la semaine
Vous avez peut-être entendu parler de personnes très douées qui peuvent calculer le jour de la semaine pour n'importe quelle date dans leur tête rapidement et avec précision.

Méthode 3 sur 5: attribuer des lettres à des jours

  1. 1
    Attribuez une lettre de l'alphabet à chaque jour de l'année. Comme il y a sept jours dans une semaine, nous utilisons sept lettres (A à G). Le 1er janvier est A, le 2 janvier est B, et ainsi de suite. Après G, il recommence à partir de A. Ainsi, puisque le 7 janvier est G, le 8 janvier sera à nouveau A (tout comme les 15, 22 et 29 janvier).
  2. 2
    Continuez ainsi les 365 jours de l'année. (Nous ignorons les années bissextiles pour l'instant). Lorsque nous arriverons au 31 décembre, nous serons de retour à la lettre A pour la cinquante-troisième fois. Voici un tableau des lettres du jour pour toute l'année:
    ., -, -, -, -, -, -, -, -, -, -, -, -,. |Jan|Fév|Mar|Avr|Mai|Juin|Juil|Août|Sep|Oct|Nov|Déc|, - - - - - - - -+ - -+ - -+ - -+ - -+ - -+ - -+ - -+ - -+ - -+ - -+ - -+ - -| |(29) 22 15 8 1| A | D | D | G | B | E | G | C | F | A | D | F | | - - - - - - - -+ - -+ - -+ - -+ - -+ - -+ - -+ - -+ - -+ - -+ - -+ - -+ - -| |(30) 23 16 9 2| B | E | E | A | C | F | A | D | G | B | E | G | |(31) 24 17 10 3| C | F | F | B | D | G | B | E | A | C | F | A | | 25 18 11 4| D | G | G | C | E | A | C | F | B | D | G | B | | 26 19 12 5| E | A | A | D | F | B | D | G | C | E | A | C | | 27 20 13 6| F | B | B | E | G | C | E | A | D | F | B | D | | - - - - - - - -+ - -+ - -+ - -+ - -+ - -+ - -+ - -+ - -+ - -+ - -+ - -+ - -| | 28 21 14 7| G | C | C | F | A | D | F | B | E | G | C | E | ' - - - - - - - -' - -' - -' - -' - -'- -' - -' - -' - -' - -' - -' - -' - -' 
  3. 3
    Sachez quelle lettre est la lettre du dimanche (un terme explicite) pour l'année qui vous intéresse.
    • Pour 2005, la lettre du dimanche est B.
    • Pour 2006, c'est A. (retour d'une lettre de l'année précédente)
    • Pour 2007, c'est G. (encore une lettre de l'année précédente - G est considéré comme une lettre de A)
    • 2008 est une année bissextile. Pour janvier et février, la lettre du dimanche est F (une lettre de l'année précédente), mais le jour bissextile, le 29 février, provoque une perturbation. De mars à décembre, la lettre du dimanche est E.
    • Pour 2009, la lettre du dimanche est D. (Encore une fois, un pas en arrière.)
    • Voici le tableau complet:
      ., -, -, -, -,. |1600|1700|1800|1900|. |2000|2100|2200|2300|,- - - - - -+ - - + - - + - - + - - | | 00| BA | C | E | G | | - - - - - -+ - - + - - + - - + - - | |85 57 29 01| G | B | D | F | |86 58 30 02| F | A | C | E | |87 59 31 03| E | G | B | D | |88 60 32 04| DC | EF | AG | CB | | - - - - - -+ - - + - - + - - + - - | |89 61 33 05| B | D | F | A | |90 62 34 06| A | C | E | G | |91 63 35 07| G | B | D | F | |92 64 36 08| EF | AG | CB | ED | | - - - - - -+ - - + - - + - - + - - | |93 65 37 09| D | F | A | C | |94 66 38 10| C | E | G | B | |95 67 39 11| B | D | F | A | |96 68 40 12| AG | CB | ED | GF | | - - - - - -+ - - + - - + - - + - - | |97 69 41 13| F | A | C | E | |98 70 42 14| E | G | B | D | |99 71 43 15| D | F | A | C | | 72 44 16| CB | ED | GF | BA | | - - - - - -+ - - + - - + - - + - - | | 73 45 17| A | C | E | G | | 74 46 18| G | B | D | F | | 75 47 19| F | A | C | E | |76 48 20| ED | GF | BA | DC | | - - - - - -+ - - + - - + - - + - - | | 77 49 21| C | E | G | B | | 78 50 22| B | D | F | A | | 79 51 23| A | C | E | G | | 80 52 24| GF | BA | DC | EF | | - - - - - -+ - - + - - + - - + - - | | 81 53 25| E | G | B | D | | 82 54 26| D | F | A | C | | 83 55 27| C | E | G | B | | 84 56 28| BA | DC | EF | AG | ' - - - - - -+ - - + - - + - - + - - |. |1600|1700|1800|1900|. |2000|2100|2200|2300|. ' - - ' - - ' - - ' - - '- - - - - -+ - - + - - + - - + - - |. |1600|1700|1800|1900|. |2000|2100|2200|2300|. ' - - ' - - ' - - ' - - '- - - - - -+ - - + - - + - - + - - |. |1600|1700|1800|1900|. |2000|2100|2200|2300|. ' - - ' - - ' - - ' - - ' 
  4. 4
    Rassemblez-les pour trouver le jour de la semaine de n'importe quelle date. Par exemple, essayons juin 2007. L'année 2007 est G. Nous voyons dans la table des jours que le 3 juin est G et donc un dimanche. Mais nous voulions savoir pour le 4 juin. Le 4 juin est le lendemain du 3 juin. Par conséquent, le 4 juin 2007 est un lundi.
L'ajout de 16 ans soustrait 1 du jour de la semaine
Ou 1764), l'ajout de 4 ans soustrait 2 du jour de la semaine, l'ajout de 12 ans ajoute 1 au jour de la semaine, l'ajout de 16 ans soustrait 1 du jour de la semaine et l'ajout de 28, 56 et 84 ans ajoute 0 à (c'est-à-dire

Méthode 4 sur 5: en utilisant l'algorithme apocalyptique

  1. 1
    Tout d'abord, vous pouvez utiliser les informations ci-dessous pour obtenir de l'aide....
    • Le calendrier grégorien [1]
  2. 2
    Années
    • Les années divisibles par 4 sont des années bissextiles...
    • sauf que les années divisibles par 100 ne sont pas des années bissextiles...
    • à l'exception que les années divisibles par 400 sont des années bissextiles.
    • Les années non bissextiles seront appelées «années normales» tout au long du guide. Le calendrier grégorien se répète exactement tous les 400 ans. Notez que le calendrier grégorien a été réformé dans le passé et que cet algorithme ne s'applique qu'au calendrier grégorien dans son état le plus récent. Pour plus d'informations sur cette réforme et ses conséquences sur le calcul du jour de la semaine, reportez-vous à la section « Calendrier julien» de l'article de Wikipédia intitulé «Doomsday rule»: http://en.wikipedia.org/wiki/Doomsday_rule#Julian_calendar.
    • Dans ce guide, les notations «CE» et «BCE» seront utilisées. «CE» signifie «Common Era» et équivaut à «AD» «BCE» signifie «Before the Common Era» et équivaut à «BC» Pour plus d'informations, reportez-vous à l'article de Wikipédia intitulé «Common Era»: http:// en.wikipedia.org/wiki/Common_Era. Considérez les années CE comme positives et les années BCE comme négatives (mais soustrayez-en une d'abord). Par exemple, pensez à 1670 EC comme 1670, mais pensez à 1540 BCE comme -1539. Notez qu'il n'y a pas d'année 0 dans le calendrier grégorien, vous devez donc soustraire 1 de 1540 avant de placer un signe négatif devant. Pour une explication plus détaillée, voir l'article de Wikipédia intitulé «Numérotation des années astronomiques»: http://en. wikipedia.org/wiki/Astronomical_year_numbering.
    • Dans ce guide, les formats mm/jj et mm/jj/aa seront utilisés pour représenter les dates sous une forme compacte. Par exemple, 1,33 équivaut au 6 août, 3 54670 équivaut au 24 juillet, 1670 CE, 10,33/534 équivaut au 6 décembre, 534 CE et 23/10/1889 équivaut au 23 octobre, 1890 avant notre ère
    • Notez que l'algorithme est fortement basé sur l'algorithme Doomsday, qui est facile à utiliser (nécessitant uniquement des connaissances en addition, soustraction, multiplication et division), nécessite très peu de mémorisation et peut être extrêmement rapide avec de la pratique. L'algorithme Doomsday a été développé pendant de nombreuses années par John Horton Conway [2], un professeur de mathématiques renommé à l'Université de Princeton, qui a pris le calcul du jour de la semaine comme passe-temps. Au moment où il m'a appris l'algorithme, il pouvait calculer le jour de la semaine dans sa tête pour N'IMPORTE QUELLE date du calendrier grégorien en 3 secondes chrono. Regardez cette performance d'Arthur "Art" T. Benjamin [3], le "Mathémagicien" et professeur de mathématiques au Harvey Mudd College, si vous doutez que l'algorithme puisse être exécuté aussi rapidement: http://ted.com/index.php/talks/arthur_benjamin_does_mathemagic.html. Le calcul du jour de la semaine est l'un de ses derniers tours "MathMagic". Bien que certains n'aient jamais rencontré quelqu'un d'aussi rapide après avoir appris l'algorithme pour la première fois, vous pouvez considérablement améliorer votre vitesse avec la pratique. L'algorithme Doomsday repose sur une branche des mathématiques connue sous le nom d'arithmétique modulaire [4]. L'algorithme ne fonctionne que pour le calendrier grégorien, mais des astuces similaires pourraient être développées pour n'importe quel système de calendrier. Ce guide ne suppose pas une formation mathématique; pour ceux qui ont plus de sophistication mathématique, l'article de Wikipédia intitulé "Doomsday rule" [5] et la section Astuces avancées pour une plus grande vitesse de ce guide serait plus appropriée. Il y a beaucoup d'exemples tout au long du guide destinés à clarifier divers aspects de l'algorithme; n'hésitez pas à les ignorer si vous comprenez déjà les concepts qu'ils illustrent. Tous les jours de la semaine mentionnés dans les exemples sont corrects, mais ne vous inquiétez pas si vous ne savez pas comment ils ont été calculés lors de la première lecture du guide. Il y a aussi quelques répétitions délibérées pour marteler certains des concepts les plus subtils que vous voudrez peut-être parcourir si vous les comprenez déjà.
  3. 3
    Mois
    • Janvier, mars, mai, juillet, août, octobre et décembre ont 31 jours. Avril, juin, septembre et novembre ont 30 jours. Février compte 28 jours au cours d'une année normale et 29 jours au cours d'une année bissextile. Le jour bissextile, c'est-à-dire le jour qui n'existe que pendant une année bissextile est le 29 février. Il existe un mnémonique utile pour distinguer les mois de 31 jours de ceux de moins de 31 jours. Tendez votre main droite. Appuyez sur l'articulation de votre index et dites «Janvier». Appuyez sur l'espace/le creux/la vallée entre les jointures de votre index et de votre majeur et dites "Février". Vous pouvez vous rappeler que janvier a plus de jours que février parce que votre jointure est plus grande que l'écart. Ensuite, appuyez sur l'articulation de votre majeur et dites «Mars». Remarquez pendant que vous continuez que tous les mois avec 31 jours sont sur les jointures, tandis que tous les mois avec moins de jours sont en pause. Vous vous demandez probablement: «Qu'est-ce que je fais une fois arrivé en juillet?» parce que juillet est sur le poing de votre petit doigt. Revenez simplement au début; appuyez à nouveau sur l'articulation de votre index et dites «août». Continuez à partir d'ici pour arriver au reste des mois.
  4. 4
    Journées
    • Dans une année donnée (même une année bissextile), les "Doomsdays" sont tous le même jour de la semaine. Voici quelques jours apocalyptiques faciles à retenir: 1, 1, 10/10, 122, 0,56, 1,8, 71 et 10,14. Un mnémonique pour les quatre derniers jours apocalyptiques de la liste est: «9 à 5 emplois dans une station-service 7-11». Par exemple, en l'an 2000, les 4 avril, 6 juin, 11 juillet et 7 novembre sont tous des mardis. (Remarque importante: cela ne veut pas dire que le 4 avril 2001 était aussi un mardi. Le 4 avril 2001 était un mercredi.) Vous pouvez ajouter ou soustraire 7 à n'importe quel Doomsday pour obtenir un autre Doomsday. Par exemple, 0,56, 56 et 2,53 sont tous des jours apocalyptiques. Vous n'avez pas à simplement ajouter ou soustraire 7 à la fois cependant; vous pouvez utiliser n'importe quel multiple de 7. Par exemple, 1,8 et 4,56 sont tous deux des Doomsdays, à cause de 5+7*3 ≡ 26. Un autre Doomsday facile à retenir est 3/0. Non, ce n'est pas une faute de frappe; 3/0 est simplement une autre façon de penser au dernier jour de février. Contrairement au 18 ou au 19, le 3/0 est toujours le dernier jour de février, qu'il s'agisse ou non d'une année bissextile. Le monde peut même penser que les mois ont des jours négatifs. Par exemple, 1 et 8/-6 sont tous deux des jours apocalyptiques. Pour convertir le 8/-6 en une date normale, il suffit d'ajouter le nombre de jours du 7ème mois (juillet).Utilisez l'astuce du paragraphe précédent pour déterminer qu'il y a 31 jours en juillet. Ainsi, 8/-6 est identique à 3,55, car -6+31 25. Nous pouvons également penser aux mois comme ayant des jours supérieurs à 31. Par exemple, 10/10 et 10/34 sont tous les deux des jours apocalyptiques. Pour convertir 10/34 en une date normale, soustrayez simplement le nombre de jours du 10ème mois (octobre). Nos doigts nous disent qu'octobre a 31 jours, donc 10/34 est 10,33 car 34-31 ≡ 3. On peut même écrivez les jours de juin comme jours de mars. Par exemple, 1 et 6/-64 sont des jours apocalyptiques. Mai (mois 5) a 31 jours, donc 6/-64 ≡ 5/-33. Avril (mois 4) a 30 jours, donc 5/-33 ≡ 4/-3. Mars (mois 3) a 31 jours, donc 4/-3 1,58. Ainsi, le -64 juin équivaut au 28 mars, qui est un jour apocalyptique. Veillez à prendre en compte les années bissextiles lorsque vous utilisez ces astuces pour déterminer les jours de fin du monde en janvier ou février. Par exemple, dans N'IMPORTE QUELLE année, le 3/0 et le 3/-14 sont tous deux des jours apocalyptiques, mais dans une année bissextile, février a 29 jours, donc 3/-14 ≡ 25, tandis que dans une année normale, février a 28 jours, donc 3/ -14 ≡ 24. Ainsi, le 15 février est un jour apocalyptique pendant les années bissextiles, mais le 14 février est un jour apocalyptique pendant les années normales. Il faut aussi faire attention en allant de mars à janvier. Année bissextile: 3/-42 ≡ 2/-13 ≡ 18; année normale: 3/-42 ≡ 2/-14 ≡ 17.
  5. 5
    Maintenant que vous savez comment fonctionne le calendrier grégorien, vous pouvez utiliser vos connaissances pour...
    • Calculez le jour de la semaine dans votre tête à partir de l'année, du mois et du jour
    • Nombre-jours
    • "Nombre-jours" sont des nombres qui sont associés aux jours de la semaine par un mnémonique.
    • Dimanche ≡ AUCUN jour ≡ 0
    • Lundi ≡ UNjour ≡ 1
    • Mardi ≡ DEUX JOURS ≡ 2
    • Mercredi ≡ TROIS JOURS ≡ 3 (boiteux, je sais)
    • Jeudi ≡ FOUR'Sday ≡ 4
    • Vendredi ≡ CINQ jours ≡ 5
    • Samedi ≡ SIXAday ≡ 6
    • Dimanche ≡ SE'ENday ≡ 7 ("sen" comme dans une contraction de "sept" qui sonne comme "soleil")
    • Comme il y a sept jours dans une semaine, vous pouvez ajouter ou soustraire n'importe quel multiple de 7 à N'IMPORTE QUEL point pendant N'IMPORTE QUELLE partie de N'IMPORTE QUEL calcul de jour de la semaine. C'est pourquoi dimanche est à la fois 0 et 7. Lundi pourrait être considéré comme -6, 8, 71, etc. Tout au long du guide, vous verrez (et avez vu) des symboles de congruence,, plutôt que des signes d'égalité, =, car 71 n'égale PAS 8, mais ils sont équivalents pour déterminer le jour de la semaine. En trouvant un jour de la semaine nous ne nous intéressons au reste que lorsque les nombres sont divisés par 7. Toutes ces congruences sont donc «modulo 7», abrégé «mod 7». Les nombres sont congrus modulo 7 si leurs restes sont les mêmes lorsqu'ils sont divisés par 7. Cela équivaut au point précédent que vous pouvez ajouter ou soustraire des multiples de 7 comme vous le souhaitez. Par exemple, 1 8, mais 1 8 (mod 7).D'autres exemples du comportement de modulo sont -15 -1 ≡ 6 (mod 7) et 4 ≡ -3 ≡ 7004 (mod 7). La notation "(mod 7)" sera omise tout au long du guide, car toutes les congruences sont supposées être modulo 7.
    • Si vous savez que le 8 août 1953 est un samedi, alors vous pouvez rapidement déterminer que le 4 août 1953 est un mardi, car quatre jours avant SIXAday est DEUX JOURS. C'est-à-dire 6-4 2. De même, si vous savez que 1,8/1776 est un FOUR'Sday, alors vous pouvez rapidement voir que 1,29/1776 est un SIXAday, à cause de 7-5 ≡ 2 et 4 +2 6. N'oubliez pas que vous pouvez ajouter ou soustraire n'importe quel multiple de 7 à un nombre-jour. Si vous savez que 10/10/-2543 est un SIXAday, alors vous pouvez rapidement déterminer que 10/2/-2543 est un CINQday, à cause de 2-10 ≡ -8 ≡ -8+7 ≡ -1, et 6+ (-1) ≡ 5. Encore une fois, n'oubliez pas de faire attention aux années bissextiles, comme 18400. Si vous savez que 188400 est un UNday, alors vous pouvez rapidement déterminer que 1/18400 est un CINQday, à cause de 188400 ≡ 3/- 18400 et 3-(-1) 4 et 1+4 5.
  6. 6
    Définitions des jours-année et des jours-siècles
    • Le "Jour-Année" d'une année donnée est le jour de la semaine où se trouvent tous ses Doomsdays. Par exemple, chaque Doomsday en 2009 est un samedi, donc le jour de l'année 2009 est samedi. Le «jour-siècle» d'un siècle donné est le «jour-année» de la première année du siècle. Le «siècle» est la première année d'un siècle donné. Le jour de l'année 1900 est le mercredi, donc le jour du siècle des années 1900 (c'est-à-dire le 20e siècle) est le mercredi. De plus, 1900 est l'année du siècle du 20e siècle. Notez cependant que l'année du siècle dans laquelle se situe -1362 (c'est-à-dire les -1300 ou le 14ème siècle avant notre ère) est -1400, PAS -1300 car -1400 vient avant -1300. Rappelez-vous également que -1400 équivaut à 1401 AEC, PAS 1400 AEC
  7. 7
    Calcul des grands mardis (400 ans)
    • Le jour de l'année de chaque année divisible par 400 est le mardi. Ces jours de l'année sont appelés «grands mardis» (juste pour vous aider à vous en souvenir). Les années qui sont divisibles par 400 sont appelées «grands mardis» et les siècles qui ont des siècles-jours qui sont également des grands mardis sont appelés «grands mardis-siècles». Ainsi, le jour de l'année 1600 est un grand mardi. Les centenaires des années 2000, les -4400 et les 96812 000 sont tous des grands mardis, les années 2000, les -4400 et 96812 000 sont tous des grands mardis, et 2000, -4400 et 96812 000 sont tous les grands mardis.
  8. 8
    Calcul des cent-jours (100 ans)
    • Si vous n'êtes pas dans un grand mardi-siècle, alors vous pouvez trouver le siècle-jour comme suit. Soustrayez 100 de l'année du siècle jusqu'à ce que vous obteniez une année du grand mardi. Comptez combien de fois vous avez soustrait 100. Si vous avez soustrait 100 une fois, alors le jour du siècle est le dimanche; si deux fois, alors c'est vendredi; si trois fois, alors c'est mercredi; si quatre fois ou plus, alors vous vous êtes trompé parce qu'une année sur quatre est un grand mardi. Par exemple, le jour du siècle des années 1800 est le vendredi, car vous soustrayez 100 deux fois pour obtenir 1600, ce qui est une année de grand mardi (car elle est divisible par 400). Le modèle ressemble à ceci: 1600 ≡ TWO'Sday ≡ 2, 1700 ≡ Dimanche ≡ 0, 1800 ≡ FIVEday ≡ 5 ≡ -2, 1900 ≡ THREE'Sday ≡ 3 ≡ -4, 2000 ≡ TWO'Sday ≡ 2 ≡ -5, etc.Notez que vous pouvez passer d'un jour du siècle au suivant en soustrayant deux du jour du siècle initial. Cela ne fonctionne que lorsque le plus grand des deux siècles adjacents n'est pas un Grand Mardi-siècle. C'est bien parce que vous savez déjà que le jour du siècle de chaque grand mardi-siècle est le DEUX JOURS.
  9. 9
    Calcul de la douzaine de jours (12 ans)
    • La «douzaine d'années» d'une année donnée est la plus grande année qui est à la fois inférieure ou égale à l'année donnée et qui a la propriété que la différence positive d'elle-même et de l'année-siècle est divisible par 12. jour" d'une année donnée est le jour de l'année de la douzaine d'années. La douzaine de jours peut être calculée en ajoutant le siècle-jour au résultat de la division par 12. Par exemple, la douzaine d'années de 1234 est 1224, à cause de 1224-1200 24 ≡ 12*2, et pas d'années plus grandes qui sont toujours inférieurs ou égaux à 1234 donnent une différence positive avec 1200 qui est divisible par 12. Puisque le jour de l'année de 1224 est le jeudi, le jour de la douzaine de 1234 est également le jeudi. Notez que les douzaines de jours pour 1235, 1226 et 1229 sont également tous des jeudis; tandis que les douzaines de jours pour 1236 et 1238 ne sont pas les mêmes (ce sont en fait des vendredis).Pour un autre exemple, nous pouvons calculer la douzaine de jours de -1713. Nous devons d'abord trouver le centenaire des années 1700. Puisque nous devons soustraire 100 trois fois de -1700 pour arriver à une année de grand mardi, le jour du siècle est le TROISIÈME JOUR. Ensuite, nous devons trouver Douzaine. Notez que la douzaine d'années n'est pas -1712, mais plutôt -1716, car -1716-(-1800) = 84 = 12*7. Ainsi, la douzaine de jours de -1713 est 3+7 ≡ 3 ≡ TROIS JOURS (puisque nous pouvons soustraire 7 à notre guise).Sday (puisqu'on peut soustraire 7 à sa guise).Sday (puisqu'on peut soustraire 7 à sa guise).
  10. 10
    Calcul des quad-jours (4 ans)
    • Le "Quad-année" d'une année donnée est le plus grand nombre qui est à la fois inférieur ou égal à l'année donnée et divisible par 4. Le "Quad-jour" d'une année donnée est le Jour-Année de l'Année Quadrinale. Par exemple, l'année Quad de 1620 est 1620; tandis que celui de 1643 est 1640. Les Quad-jours de 1640, 1641, 1642 et 1643 sont tous mercredi; tandis que le Quad-day de 1620 est samedi. Nous pouvons calculer le Quad-day comme suit. Si l'année donnée est 1642, alors l'année douzaine est 1636, à cause de 1636-1600 12*3. L'année du siècle, 1600, est un grand TWO'Sday. 3+2 5, donc la douzaine de jours de 1642 est vendredi. Soustrayez 4 de l'année quadruple, 1640, jusqu'à ce que vous obteniez l'année douzaine. Multipliez le nombre de fois que vous avez soustrait 4 par -2, et ajoutez ce résultat à la douzaine de jours pour obtenir le quad-jour. Dans notre exemple, 1640-4*1 1636, 1*-2 ≡ -2 et 5+(-2) ≡ 3,donc le Quad-day de 1642 est mercredi (comme mentionné précédemment). Le mercredi est donc aussi le jour de l'année de 1640.
  11. 11
    Calcul des années-jours (1 an)
    • Si l'année donnée n'est pas divisible par 4, comme 1642, soustrayez l'année Quad de l'année donnée. Ajoutez le résultat au Quad-day pour obtenir le Year-day. Dans notre exemple, 1642-1640 2 et 2+TROIS JOUR ≡ CINQ jours, donc le jour de l'année 1642 est vendredi.
  12. 12
    Calcul des jours apocalyptiques (mois et jours)
    • Une fois que vous connaissez le jour de l'année, vous connaissez le jour de la semaine de chaque Doomsday de cette année. Par exemple, si la date était le 1,8/1642, vous sauriez déjà que c'était un vendredi. Si la date était le 30/1642, vous soustrayez 7 jours deux fois pour découvrir que le 30/1642 est le même jour de la semaine que le 1/1642, qui est un Doomsday connu. Cela signifie que le 30/1642 est également un Doomsday, et est donc un vendredi.
  13. 13
    Calcul des jours de la semaine (jours)
    • Si on vous donne une date comme 20/1642, qui n'est pas un Doomsday, alors trouvez simplement le Doomsday le plus proche en ajoutant ou soustrayant à plusieurs reprises 7 aux Doomsdays connus. Nous savons que 1/1642 est un Doomsday, nous ajoutons donc 14 jours pour découvrir que 48642 est un Doomsday. Maintenant, nous savons que 48642 est un FIVEday, nous ajoutons donc simplement 2 jours pour trouver que 20/1642 est un SE'ENday. N'oubliez pas que le Doomsday connu le plus proche peut ne pas être dans le même mois. Par exemple, 1 59642 est plus proche de 1/1642 que de 3/0/1642. Depuis 1/1642 ≡ 4/-3642 ≡ 1 58642, nous savons que 1 59642 ≡ FIVEday + 1 ≡ SIXAday.

Méthode 5 sur 5: attribuer des nombres aux jours et aux mois

  1. 1
    Utilisez ce tableau pour connaître les valeurs des jours:
    • 0 samedi
    • 1 dimanche
    • 2 lundi
    • 3 mardi
    • 4 mercredi
    • 5 jeudi
    • 6 vendredi
    • (7 samedi)
  2. 2
    N'oubliez pas que dans le mod 7, les nombres 1, 8, 15, 22 et 29 sont égaux
  3. 3
    Utilisez ce tableau pour connaître les valeurs des mois.
    • janv févr mars 0 3 3
    • avr mai juin 6 1 4
    • juil. août sept. 6 2 5
    • oct. nov. déc. 0 3 5
  4. 4
    Utilisez ce tableau pour connaître les valeurs des années (revenez-y plus tard si cela n'a pas de sens maintenant)
    • 0-2345- 0
    • 0123-56 5
    • 01-3456 11
    • -1234-6 17
    • 012-456 22
En ajoutant 1 au jour de la semaine
Nous pouvons ajouter 1 an, en ajoutant 1 au jour de la semaine, pour obtenir que -7227 est un THREE'Sday.

Conseils

  • La première ligne du tableau des jours peut être mémorisée comme "Add G, beg C, fad F". Une fois que vous connaissez la première rangée, comptez en avant pour trouver le reste des jours.
  • Les années, prises à des intervalles de dix ans, tombent dans un modèle. Lisez les colonnes pour voir le modèle. Notez que la rangée supérieure du graphique ne correspond pas au modèle.
., -, -, -, -,. |1600|1700|1800|1900|. |2000|2100|2200|2300|., - - + - - + - - + - - + - - |. | 00 | BA | C | E | G |. | - - + - - + - - + - - + - - |. / 10 / C / E / V / B /. | 20 | ED | GF | BA | DC |. / 30 / F / A / C / E /. | 40 | AG | CB | ED | GF |. / 50 / B / D / F / A /. | 60 | DC | EF | AG | CB |. / 70 / E / V / B / D /. | 80 | GF | BA | DC | FE |. | 90 | A | C | E | G |. ' - - ' - - ' - - ' - - ' - - '. |1600|1700|1800|1900|. |2000|2100|2200|2300|. ' - - ' - - ' - - ' - - ' 
  • Pour calculer le jour de la semaine pour des années plus éloignées (disons 1970 ou 1900 ou 1800), il peut être utile de mémoriser les années clés et le jour de base de cette année, plutôt que de compter de 2007/mercredi jusqu'à 1800 (n'oubliez pas le saut ans).
  • Vous devez également vous souvenir du "mercredi 2007" ou d'une autre année proche. Vous pouvez maintenant calculer n'importe quel jour de la semaine dans une dizaine d'années.
  • La Table des Siècles se répète tous les 400 ans dans le modèle 0-5-3-1 8-15-22-29". Quelle que soit la lettre du 1er du mois, il en sera de même pour les 8, 15, 22, et (si le mois compte au moins 29 jours) le 29.

Mises en garde

  • N'essayez pas d'aller trop vite au début. Concentrez-vous d'abord sur la précision avant de vous concentrer sur la vitesse. Augmentez votre vitesse au fil du temps. Aller trop vite est le moyen le plus sûr de faire des erreurs et le processus n'est pas amusant. Par exemple, il semble que 20 pour cent des gens connaissent le jour de la semaine où ils sont nés, il y aura donc souvent quelqu'un dans les parages pour vérifier si vous avez raison.
  • Vous vous découragerez au début lorsque vous n'aurez pas beaucoup de chance de progresser. N'abandonnez pas, cependant. Le succès viendra petit à petit.
  • Certains sages deviendront jaloux que vous attiriez toute l'attention avec votre «astuce de fête» et diront quelque chose comme: «Oh, ce n'est pas grave. Les savants idiots peuvent faire ça.» Donc, ce serait peut-être une bonne idée de préparer à l'avance un retour rapide comme: «Vous savez, vous avez raison, ils le peuvent. Mais ce qu'ils peuvent faire, c'est peut-être une chose de plus que vous.»
  • Méfiez-vous des personnes qui pourraient vous donner des dates qui n'existent pas juste pour vous tromper, par exemple, le 31 avril (il n'y a pas 31 jours en avril) ou le 29 février 1900 (cette année de fin de siècle n'est pas une année bissextile).
  • Tout d'abord, n'oubliez pas de convertir de BCE en années négatives (c'est-à-dire la numérotation des années astronomiques) pour obtenir 16/-6387 227. Maintenant, nous remarquons que nous pouvons ignorer tous les chiffres après les 4 premiers, car le calendrier grégorien se répète tous les 400 ans (et, donc, également tous les 10000 ans). Ainsi, 16/-6387 227 ≡ 16/-7227. Maintenant, nous remarquons que -7600 est une année de grand mardi, mais dans ce cas, il serait plus facile de revenir en arrière à partir de -7200, qui est également une année de grand mardi. L'année du siècle, -7300, est un siècle avant un grand mardi-siècle, donc le jour du siècle est le TROISIÈME. Nous pouvons ajouter 84 ans sans affecter le jour de la semaine pour obtenir que -7216 est un TROIS JOUR. Nous pouvons soustraire 12 ans, en réduisant le jour de la semaine par 1, pour obtenir -7228 est un DEUX JOURS. Nous pouvons ajouter 1 an, en ajoutant 1 au jour de la semaine, pour obtenir que -7227 est un THREE'Sday. Puisque -7227 n'est PAS divisible par 4, il ne peut pas s'agir d'une année bissextile, et donc 10 est un Doomsday. À présent,nous savons que 10 17 ≡ 16 + 1, donc nous soustrayons un du Jour de l'Année, TROIS JOUR, pour obtenir que le 16 janvier 6387228 AEC est un mardi.
  • Ne soyez pas frustré si vous obtenez toujours une mauvaise réponse au début. Si calculer le jour de la semaine dans votre tête était facile, alors ce ne serait pas aussi impressionnant une fois que vous l'aurez compris.
  • Cet algorithme fonctionne pour le calendrier grégorien. Ceci est utilisé aux États-Unis après 1752 (après que les Britanniques l'ont adopté) mais dans certains pays, il a été adopté plus tôt (Espagne et Portugal). La Russie ne l'a adopté qu'après la Révolution russe. Donc, vous devriez toujours poser la question 'Quel pays'?' avant d'exécuter l'algorithme pour l'exhaustivité.
  • Attention aux années bissextiles. Une année bissextile a deux lettres du dimanche - une pour avant et une pour après, le 29 février.
  • Si vous pratiquez suffisamment, vous finirez par mémoriser plus de jours de fin du monde et tous les jours de siècle communs (comme les années 1900 ≡ 3 et 2000 ≡ 2). Une fois que vous pouvez obtenir la réponse juste dans votre tête assez rapidement, vous pouvez impressionner vos amis en leur disant le jour de la semaine où ils ou une personne célèbre sont nés. L'un des moyens les plus simples d'augmenter votre vitesse est de mémoriser tous les nombres associés aux mois de l'année (si vous ne l'avez pas déjà fait), afin de ne pas perdre de temps à compter à partir de janvier. Un autre moyen rapide d'augmenter votre vitesse consiste à mémoriser certains jours apocalyptiques de janvier et février pour les années non bissextiles, comme 10 et 2/0. Vous pouvez en ajouter un à n'importe quel Doomsday de janvier ou février d'une année non bissextile pour obtenir le Doomsday pour une année bissextile. Ainsi, 11 et 2 seraient l'année bissextile Doomsdays. Pour un tableau de tous les Doomsdays, reportez-vous à la section «Aperçu de tous les Doomsdays» de l'article de Wikipédia intitulé « Doomsday rule»: http://en.wikipedia.org/wiki/Doomsday_rule#Overview_of_all_Doomsdays.
  • Il est utile de connaître l'effet que l'ajout de différents nombres d'années aura sur le jour de l'année. En raison des années bissextiles, ces astuces ne fonctionnent que dans certains blocs d'un certain nombre d'années et uniquement lorsque vous commencez la première année du bloc. Comme mentionné dans la section "Calculer les jours de siècle", dans les blocs "standard" de 400 ans (c'est-à-dire 1600-1699 ou 1200-1599, mais pas 1400-1799), à partir de n'importe quel grand mardi (c'est-à-dire 1600 ou 1200), en ajoutant 100 ans, on soustrait 2 du jour de la semaine. Dans les blocs de 100 ans "standard" (c'est-à-dire 1700-1799 mais pas 1704-1803), à partir de n'importe quelle année Quad (c'est-à-dire 1700 ou 1764), l'ajout de 4 ans soustrait 2 du jour de la semaine, ajouter 12 ans ajoute 1 au jour de la semaine, l'ajout de 16 ans soustrait 1 du jour de la semaine, et l'ajout de 28, 56 et 84 ans ajoute 0 au (c'est-à-dire n'affecte pas) le jour de la semaine.
  • Vous pouvez travailler en arrière au lieu d'avancer à partir des années du grand mardi en ajoutant un au grand mardi pour obtenir que le jour du siècle du siècle précédant un grand mardi-siècle soit le mercredi. La meilleure technique pour les Century-days est simplement de mémoriser le schéma simple qu'ils suivent, qui se répète tous les 4 siècles: 2, 0 ou 7, -2 ou 5, 3. Vous pouvez également travailler en arrière à partir des douzaines d'années et des quatre années.. Pour obtenir le jour de l'année d'une année précédant immédiatement une année bissextile, soustrayez deux au jour de l'année de l'année bissextile. Les années de douzaine et les années quadruples sont des années bissextiles (À MOINS QUE ce ne soient également des années de siècle, à l'exclusion des cas dans lesquels elles sont également des années de grand mardi lorsqu'elles SONT des années bissextiles). Pour obtenir le jour de l'année d'une année précédant immédiatement une année normale, soustrayez un du jour de l'année de l'année normale (la plus grande). Avec plus de pratique, vous pourriez rapidement trouver le jour de la semaine pour une date plus difficile, disons le 16 janvier 6387228 BCE Voir le paragraphe suivant pour la solution.
  • Si vous ne pouvez pas comprendre pourquoi vous continuez à obtenir une réponse différente de celle de la calculatrice Doomsday à n'importe quelle date BCE, comme le numéro 2 du quiz d'entraînement, n'oubliez pas de soustraire une de l'année avant de placer un signe négatif devant cela pour tenir compte du fait qu'il n'y a pas d'année 0 dans le calendrier grégorien. Par exemple, le 16 août 1783 avant notre ère serait entré dans le calculateur de la fin du monde sous le nom 86/-1782. De plus, si vous n'obtenez toujours pas la même réponse, assurez-vous de saisir le bon numéro pour le mois.
En parallèle
  1. Comment mettre au carré des nombres se terminant par 5?
  2. Comment citer un poème?
  3. Comment créer votre propre personnage Star Wars?
  4. Comment écrire des caractères non stéréotypés?
  5. Comment repérer un personnage de Mary Sue?
  6. Comment lire des histoires sur FanFiction.Net?
FacebookTwitterInstagramPinterestLinkedInGoogle+YoutubeRedditDribbbleBehanceGithubCodePenWhatsappEmail